New selective inhibitors of steroid 11beta-hydroxylation in the adrenal cortex. Synthesis and structure-activity relationship of potent etomidate analogues.
نویسندگان
چکیده
Derivatives of etomidate were evaluated as inhibitors of adrenal steroid 11beta-hydroxylations. Stereoselective coupling by Mitsunobu produced chirally pure analogues to study the effect of configuration, modification of the ester, and substitution in the phenyl ring, with the aim to probe specific sites for introducing a radionuclide. Iodophenyl metomidate (IMTO) labeled with iodine-131 served as radioligand for structure-affinity relationship studies. We have characterized the kinetic parameters of specific (131)I-IMTO binding on rat adrenal membranes and used the displacement of (131)I-IMTO binding to evaluate functionalized MTO analogues. Our results indicated that (1) ( R)-configuration is essential for high affinity, (2) highest potency resides in the ethyl, 2-propyl, and 2-fluoroethyl esters, and (3) substitution of the phenyl ring is well tolerated. The clinically used inhibitors metyrapone and ketoconazole inhibited (131)I-IMTO binding with low affinity. Incubation of selected analogues with human adrenocortical NCI-h295 cells demonstrated a high correlation with the inhibitory effect on cortisol secretion.
منابع مشابه
Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors
A new series of peptide-like derivatives containing different aromatic amino acids andpossessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para positionof an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2)inhibitors. The synthetic reactions were based on the solid phase peptide synthesis methodusing Wang resin. One of the analogues, i...
متن کاملNovel Group of Imidazole Derivatives as Atypical Selective Cyclooxygenase-2 Inhibitors: Design, Synthesis and Biological Evaluation
In this study, a new series of 5-substituted 1-benzyl-2-(methylsulfonyl)-1-H-imidazolewith atypical structure-activity relationship was designed, synthesized, and biologicalevaluated as selective cyclooxygenase-2 inhibitors. Docking studies revealed that althoughthe pharmacophoric substitute of the compound 5b, methylsulfonyl group, has been directlyattached to the central ring, it is in the sa...
متن کاملNovel Group of Imidazole Derivatives as Atypical Selective Cyclooxygenase-2 Inhibitors: Design, Synthesis and Biological Evaluation
In this study, a new series of 5-substituted 1-benzyl-2-(methylsulfonyl)-1-H-imidazolewith atypical structure-activity relationship was designed, synthesized, and biologicalevaluated as selective cyclooxygenase-2 inhibitors. Docking studies revealed that althoughthe pharmacophoric substitute of the compound 5b, methylsulfonyl group, has been directlyattached to the central ring, it is in the sa...
متن کاملDesign, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors
A new series of peptide-like derivatives containing different aromatic amino acids andpossessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para positionof an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2)inhibitors. The synthetic reactions were based on the solid phase peptide synthesis methodusing Wang resin. One of the analogues, i...
متن کاملDesign, Synthesis and Biological Evaluation of new 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors
As a continuous research for discovery of new COX-2 inhibitors, chemical synthesis, in vitro biological activity and molecular docking study of anew group of 1,4-dihydropyridine (DHP) derivatives were presented. Novel synthesized compounds possessing a COX-2 SO2Me pharmacophore at the para position of C-4 phenyl ring, different hydrophobic groups (R1) at C-2 position and alkoxycarbonyl groups (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 51 7 شماره
صفحات -
تاریخ انتشار 2008